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Exercise 1

Let d, n ≥ 1 be integers, and let f1, . . . , fn : Rd → Rd be diffeomorphisms such that
there exists a constant 0 < c < 1 with the property that

|||Dfi(x)||| ≤ c
for every x ∈ Rd and every i = 1, . . . , n. Here, Dfi(x) stands for the derivative of fi
at x, and |||.||| denotes the operator norm associated to the euclidean norm: namely for
any M ∈ End(Rn), one has

|||M ||| = sup
x∈Rn,x 6=0

||Mx||
||x||

, where ||(x1, . . . , xn)|| =
√∑

i

x2i .

The goal of the exercise is to prove that there exists a unique non-empty compact
subset K ⊂ Rd satisfying

(1) K =
⋃

i=1,...,n

fi(K)

and to study this set.

1. Prove that when n = 1 there is a unique non-empty compact set K satisfying (1).
What is the nature of K in this case?

2. We introduce the set K of non-empty compact subsets of Rd, and we equip it with
the Hausdorff distance, defined as

d(K1,K2) := inf{ε > 0 | K1 ⊂ Kε
2 and K2 ⊂ Kε

1},
where Kε := {x ∈ Rd | d(x,K) ≤ ε}. Prove that (K, d) is a complete metric space.

3. Prove that there exists a unique non-empty compact set K satisfying (1).

4. Let n = d = 2, and let f1, f2 : C ' R2 → C ' R2 be complex affine maps of the form

f1(z) = λz + 1 and f2(z) = λz − 1 for z ∈ C,
where λ ∈ C has absolute value 0 < |λ| < 1. Show that if |λ| < 1/2, then K is not
connected, and that its connected components are points.

5. (Bousch’s theorem) Show that, a contrario, if |λ| ≥ 1√
2
, then K is connected.

Hint: To prove Bousch’s theorem, you may first show that under the assumption |λ| ≥ 1√
2

, one

has f1(K) ∩ f2(K) 6= ∅.

Exercise 2

Let n be a positive integer number, and let E be a complex vector space of dimension
n. Denote by L(E) the vector space of endomorphisms of E, and denote by E∗ the dual
space of E. The vector space of endomorphisms of E∗ is denoted by L(E∗).

Consider a vector subspace A ⊂ L(E) such that A contains the identity endomorphism
and is closed with respect to the composition. Put A∗ = {a∗ | a ∈ A} ⊂ L(E∗), where
a∗ denotes the transpose of a.
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For any vector v ∈ E, denote by A(v) the set {a(v) | a ∈ A} ⊂ E, and for any vector
u ∈ E∗, denote by A∗(u) the set {a∗(u) | a∗ ∈ A∗} ⊂ E∗.

Assume that there is no proper subspace {0} ( F ( E which is A-invariant, that is,
such that a(F ) ⊂ F for each a ∈ A.

1. Let v ∈ E and u ∈ E∗ be non-zero vectors. Show that A(v) = E and A∗(u) = E∗.

2. Let v1 and v2 be two linearly independent vectors in E. Prove that there exists an
endomorphism a ∈ A such that a(v1) 6= 0 and a(v2) = 0.
Hint: Show that, otherwise, there would exist an endomorphism t ∈ L(E) such that t(v2) = v1
and (t ◦ b)(v2) = (b ◦ t)(v2) for any b in A, and obtain a contradiction.

3. Prove that A contains an endomorphism of rank 1.

4. Prove that A contains all endomorphisms of rank 1 in L(E). Deduce that A coincides
with L(E).

5. (Burnside’s theorem) Let r be a positive integer number. Prove that there exists an
integer number N (depending on n and r) such that any subgroup G ⊂ GL(E) (where
GL(E) denotes the general linear group of E) whose elements have order at most r
satisfies the following property: G is finite and its cardinality is at most N .

Exercise 3

The size of a finite set S is denoted by |S|.
For a finite set S, denote by RS the R-linear space of functions g : S → R. For a

function g ∈ RS , the average value of g on S is denoted by E(g) := 1
|S|
∑

s∈S g(s).

The vector space RS has a natural scalar product given by (g, h) := E(g.h) =
1
|S|
∑

s∈S g(s)h(s), and ||g||2 := (g, g)

For a subset T ⊂ S, the characteristic function of T is denoted by 1T ∈ RS : it takes
value 1 at each t ∈ T and zero outside. The line in RS spanned by 1T is denoted by LT .

For a subset T ⊂ S and g ∈ RS , the restriction of g to T is denoted by g|T ∈ RT .

Recall that a partition P = {V1, . . . , Vm} of a set V is a finite collection V1, . . . , Vm of
disjoint subsets of V with

⋃m
i=1 Vi = V . Another partition Q = {U1, . . . , Uk} of V is a

refinement of P if for any Uj ∈ Q, there exists Vi ∈ P with Uj ⊆ Vi.

*

1. For finite sets T ⊆ S, show that the orthogonal projection of a function g ∈ RS to
LT is given by E(g|T )1T .
2. Show that a partition P of S gives a set of pairwise orthogonal vectors 1X , for X ∈ P .

**

From now on we will assume S = V × V for a finite set V . A partition P of V gives
rise to a partition P 2 = {X × Y |X,Y ∈ P} of S. Define the subspace LP of RS by

LP :=
⊕

X,Y ∈P
LX×Y ,

and denote by πP the orthogonal projection of RS to LP .
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3. Show that if a partition Q is a refinement of a partition P of V , then πP ◦ πQ = πP .

In particular, for any g ∈ RS , we have ||πQ(g)||2 = ||πQ(g)− πP (g)||2 + ||πP (g)||2.

Let now f : S → {0, 1} be a fixed Boolean function. For two subsets X,Y ⊂ V , define

µX,Y := E(f|X×Y ) =
1

|X||Y |
∑

x∈X,y∈Y
f(x, y).

Let ε > 0 be a positive real number. The pair (X,Y ) is called ε-regular with respect
to f if for any subsets A ⊂ X and B ⊂ Y with |A| ≥ ε|X| and |B| ≥ ε|Y |, we have
|µA,B − µX,Y | ≤ ε; otherwise, (X,Y ) is called ε-irregular.

4. Let X,Y ⊂ V . Define g : X×Y → [−1, 1] by g := f|X×Y −µX,Y . Prove that if (X,Y )
is ε-regular for f , then for any two functions α : X → [0, 1] and β : Y → [0, 1], one has
|E(gαβ) | ≤ ε. Here gαβ ∈ RX×Y takes value g(x, y)α(x)β(y) at (x, y) ∈ X × Y .

Hint: Treat first the case of α = 1A and β = 1B for subsets A ⊆ X and B ⊆ Y .

***

For a partition P of V , define the irregularity function IrrP : S → {0, 1} by IrrP (x, y) =
1 if and only if (x, y) ∈ X × Y for an ε-irregular pair (X,Y ), X,Y ∈ P .

A partition P is called ε-regular if ||IrrP ||2 = E(IrrP ) ≤ ε, in other words, if∑
X,Y ∈P

(X,Y ) ε−irregular

|X||Y | ≤ ε|V |2.

5. Let X be a finite set and M1, . . . ,Mk a family of subsets of X. Show that there exists
a partition QX of X of size at most 2k such that each Mi is a disjoint union of elements
of QX .

6. Prove that any ε-irregular partition of V has a refinement Q with |Q| ≤ |P |4|P | and
||πQ(f)||2 ≥ ||πP (f)||2 + ε5.

****

Let ε > 0 be a fixed positive real number. A partition P = {X1, . . . , Xm} of V is
called ε-balanced if there exists a subset I ⊂ {1, . . . ,m} which verifies

• for all i, j ∈ I, we have |Xi| = |Xj |, and
• |
⋃
i/∈I Xi | ≤ ε|V |.

7. Prove that any partition P of V contains a refinement Q such that Q is ε-balanced
and |Q| ≤ (1 + ε−1)|P |.

*****

8. (Szemerédi regularity lemma) Show that a finite number of iterations of 6. and 7.
proves the following result: For any ε > 0, there exists Nε such that for any finite set V
and any Boolean function f on S = V ×V , there exists an ε-balanced ε-regular partition
P of V of size at most Nε.

******

Let P = {X1, . . . , Xm} be an ε-regular ε-balanced partition of V for f : S → {0, 1},
with m ≤ Nε (whose existence is a consequence of question 8.), and let k ≤ m with
|X1| = · · · = |Xk|, and |Xk+1 ∪ · · · ∪Xm| ≤ ε|V |. Let R be the union of all Xi×Xj over
the indices 1 ≤ i, j ≤ k with (Xi, Xj) ε-regular and µXi,Xj ≥ 2ε.

Consider the decomposition of f as the sum of Boolean functions fb and fs, where
fb = 1R.f and fs = f − 1R.f .
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9. Show that fs has a small norm (as a function of ε).

10. Prove the following property for fb. Let n be an integer. An n-cycle x for fb is an
n-tuple x = (x1, x2, . . . , xn) such that fb(x1, x2) = fb(x2, x3) = · · · = fb(xn, x1) = 1.

Show that either fb does not have any n-cycle or it has at least (2n − n)
(
ε(1−ε)
m

)n
|V |n

n-cycles.

Hint: Observe that the number of such n-cycles x with x ∈ Xi1 × · · · ×Xin is given by∑
x∈Xi1

×···×Xin
f(x1, x2)f(x2, x3) . . . f(xn, x1). Write f|Xi×Xj

= gi,j +µXi,Xj
as in 4., and apply

4.

11. What is the extension of 10. to other patterns?


