Exercise 1

Let $d, n \geq 1$ be integers, and let $f_{1}, \ldots, f_{n}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be diffeomorphisms such that there exists a constant $0<c<1$ with the property that

$$
\left\|\left\|D f_{i}(x)\right\|\right\| \leq c
$$

for every $x \in \mathbb{R}^{d}$ and every $i=1, \ldots, n$. Here, $D f_{i}(x)$ stands for the derivative of f_{i} at x, and $|||||\mid$ denotes the operator norm associated to the euclidean norm: namely for any $M \in \operatorname{End}\left(\mathbb{R}^{n}\right)$, one has

$$
\left\lvert\,\|M\|=\sup _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|M x\|}{\|x\|}\right., \text { where }\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|=\sqrt{\sum_{i} x_{i}^{2}} .
$$

The goal of the exercise is to prove that there exists a unique non-empty compact subset $K \subset \mathbb{R}^{d}$ satisfying

$$
\begin{equation*}
K=\bigcup_{i=1, \ldots, n} f_{i}(K) \tag{1}
\end{equation*}
$$

and to study this set.

1. Prove that when $n=1$ there is a unique non-empty compact set K satisfying (1). What is the nature of K in this case?
2. We introduce the set \mathcal{K} of non-empty compact subsets of \mathbb{R}^{d}, and we equip it with the Hausdorff distance, defined as

$$
d\left(K_{1}, K_{2}\right):=\inf \left\{\varepsilon>0 \mid K_{1} \subset K_{2}^{\varepsilon} \text { and } K_{2} \subset K_{1}^{\varepsilon}\right\},
$$

where $K^{\varepsilon}:=\left\{x \in \mathbb{R}^{d} \mid d(x, K) \leq \varepsilon\right\}$. Prove that (\mathcal{K}, d) is a complete metric space.
3. Prove that there exists a unique non-empty compact set K satisfying (1).
4. Let $n=d=2$, and let $f_{1}, f_{2}: \mathbb{C} \simeq \mathbb{R}^{2} \rightarrow \mathbb{C} \simeq \mathbb{R}^{2}$ be complex affine maps of the form

$$
f_{1}(z)=\lambda z+1 \text { and } f_{2}(z)=\lambda z-1 \text { for } z \in \mathbb{C},
$$

where $\lambda \in \mathbb{C}$ has absolute value $0<|\lambda|<1$. Show that if $|\lambda|<1 / 2$, then K is not connected, and that its connected components are points.
5. (Bousch's theorem) Show that, a contrario, if $|\lambda| \geq \frac{1}{\sqrt{2}}$, then K is connected.

Hint: To prove Bousch's theorem, you may first show that under the assumption $|\lambda| \geq \frac{1}{\sqrt{2}}$, one has $f_{1}(K) \cap f_{2}(K) \neq \emptyset$.

Exercise 2

Let n be a positive integer number, and let E be a complex vector space of dimension n. Denote by $\mathcal{L}(E)$ the vector space of endomorphisms of E, and denote by E^{*} the dual space of E. The vector space of endomorphisms of E^{*} is denoted by $\mathcal{L}\left(E^{*}\right)$.

Consider a vector subspace $A \subset \mathcal{L}(E)$ such that A contains the identity endomorphism and is closed with respect to the composition. Put $A^{*}=\left\{a^{*} \mid a \in A\right\} \subset \mathcal{L}\left(E^{*}\right)$, where a^{*} denotes the transpose of a.

For any vector $v \in E$, denote by $A(v)$ the set $\{a(v) \mid a \in A\} \subset E$, and for any vector $u \in E^{*}$, denote by $A^{*}(u)$ the set $\left\{a^{*}(u) \mid a^{*} \in A^{*}\right\} \subset E^{*}$.

Assume that there is no proper subspace $\{0\} \subsetneq F \subsetneq E$ which is A-invariant, that is, such that $a(F) \subset F$ for each $a \in A$.

1. Let $v \in E$ and $u \in E^{*}$ be non-zero vectors. Show that $A(v)=E$ and $A^{*}(u)=E^{*}$.
2. Let v_{1} and v_{2} be two linearly independent vectors in E. Prove that there exists an endomorphism $a \in A$ such that $a\left(v_{1}\right) \neq 0$ and $a\left(v_{2}\right)=0$.
Hint: Show that, otherwise, there would exist an endomorphism $t \in \mathcal{L}(E)$ such that $t\left(v_{2}\right)=v_{1}$ and $(t \circ b)\left(v_{2}\right)=(b \circ t)\left(v_{2}\right)$ for any b in A, and obtain a contradiction.
3. Prove that A contains an endomorphism of rank 1.
4. Prove that A contains all endomorphisms of rank 1 in $\mathcal{L}(E)$. Deduce that A coincides with $\mathcal{L}(E)$.
5. (Burnside's theorem) Let r be a positive integer number. Prove that there exists an integer number N (depending on n and r) such that any subgroup $G \subset G L(E)$ (where $G L(E)$ denotes the general linear group of E) whose elements have order at most r satisfies the following property: G is finite and its cardinality is at most N.

Exercise 3

The size of a finite set S is denoted by $|S|$.
For a finite set S, denote by \mathbb{R}^{S} the \mathbb{R}-linear space of functions $g: S \rightarrow \mathbb{R}$. For a function $g \in \mathbb{R}^{S}$, the average value of g on S is denoted by $\mathbb{E}(g):=\frac{1}{|S|} \sum_{s \in S} g(s)$.

The vector space \mathbb{R}^{S} has a natural scalar product given by $(g, h):=\mathbb{E}(g . h)=$ $\frac{1}{|S|} \sum_{s \in S} g(s) h(s)$, and $\|g\|^{2}:=(g, g)$

For a subset $T \subset S$, the characteristic function of T is denoted by $\mathbf{1}_{T} \in \mathbb{R}^{S}$: it takes value 1 at each $t \in T$ and zero outside. The line in \mathbb{R}^{S} spanned by $\mathbf{1}_{T}$ is denoted by L_{T}.

For a subset $T \subset S$ and $g \in \mathbb{R}^{S}$, the restriction of g to T is denoted by $g_{\mid T} \in \mathbb{R}^{T}$.
Recall that a partition $P=\left\{V_{1}, \ldots, V_{m}\right\}$ of a set V is a finite collection V_{1}, \ldots, V_{m} of disjoint subsets of V with $\bigcup_{i=1}^{m} V_{i}=V$. Another partition $Q=\left\{U_{1}, \ldots, U_{k}\right\}$ of V is a refinement of P if for any $U_{j} \in Q$, there exists $V_{i} \in P$ with $U_{j} \subseteq V_{i}$.

> *

1. For finite sets $T \subseteq S$, show that the orthogonal projection of a function $g \in \mathbb{R}^{S}$ to L_{T} is given by $\mathbb{E}\left(g_{\mid T}\right) \mathbf{1}_{T}$.
2. Show that a partition P of S gives a set of pairwise orthogonal vectors $\mathbf{1}_{X}$, for $X \in P$.

From now on we will assume $S=V \times V$ for a finite set V. A partition P of V gives rise to a partition $P^{2}=\{X \times Y \mid X, Y \in P\}$ of S. Define the subspace L_{P} of \mathbb{R}^{S} by

$$
L_{P}:=\bigoplus_{X, Y \in P} L_{X \times Y}
$$

and denote by π_{P} the orthogonal projection of \mathbb{R}^{S} to L_{P}.
3. Show that if a partition Q is a refinement of a partition P of V, then $\pi_{P} \circ \pi_{Q}=\pi_{P}$. In particular, for any $g \in \mathbb{R}^{S}$, we have $\left\|\pi_{Q}(g)\right\|^{2}=\left\|\pi_{Q}(g)-\pi_{P}(g)\right\|^{2}+\left\|\pi_{P}(g)\right\|^{2}$.

Let now $f: S \rightarrow\{0,1\}$ be a fixed Boolean function. For two subsets $X, Y \subset V$, define

$$
\mu_{X, Y}:=\mathbb{E}\left(f_{\mid X \times Y}\right)=\frac{1}{|X||Y|} \sum_{x \in X, y \in Y} f(x, y) .
$$

Let $\epsilon>0$ be a positive real number. The pair (X, Y) is called ϵ-regular with respect to f if for any subsets $A \subset X$ and $B \subset Y$ with $|A| \geq \epsilon|X|$ and $|B| \geq \epsilon|Y|$, we have $\left|\mu_{A, B}-\mu_{X, Y}\right| \leq \epsilon$; otherwise, (X, Y) is called ϵ-irregular.
4. Let $X, Y \subset V$. Define $g: X \times Y \rightarrow[-1,1]$ by $g:=f_{\mid X \times Y}-\mu_{X, Y}$. Prove that if (X, Y) is ϵ-regular for f, then for any two functions $\alpha: X \rightarrow[0,1]$ and $\beta: Y \rightarrow[0,1]$, one has $|\mathbb{E}(g \alpha \beta)| \leq \epsilon$. Here $g \alpha \beta \in \mathbb{R}^{X \times Y}$ takes value $g(x, y) \alpha(x) \beta(y)$ at $(x, y) \in X \times Y$.

Hint: Treat first the case of $\alpha=\mathbf{1}_{A}$ and $\beta=\mathbf{1}_{B}$ for subsets $A \subseteq X$ and $B \subseteq Y$.

For a partition P of V, define the irregularity function $\operatorname{Irr}_{P}: S \rightarrow\{0,1\}$ by $\operatorname{Irr}_{P}(x, y)=$ 1 if and only if $(x, y) \in X \times Y$ for an ϵ-irregular pair $(X, Y), X, Y \in P$.

A partition P is called ϵ-regular if $\left\|\operatorname{Irr}_{P}\right\|^{2}=\mathbb{E}\left(\operatorname{Irr}_{P}\right) \leq \epsilon$, in other words, if

$$
\sum_{\substack{X, Y \in P \\(X, Y) \\ \epsilon-\text { irregular }}}|X||Y| \leq \epsilon|V|^{2}
$$

5. Let X be a finite set and M_{1}, \ldots, M_{k} a family of subsets of X. Show that there exists a partition Q_{X} of X of size at most 2^{k} such that each M_{i} is a disjoint union of elements of Q_{X}.
6. Prove that any ϵ-irregular partition of V has a refinement Q with $|Q| \leq|P| 4^{|P|}$ and $\left\|\pi_{Q}(f)\right\|^{2} \geq\left\|\pi_{P}(f)\right\|^{2}+\epsilon^{5}$.

Let $\epsilon>0$ be a fixed positive real number. A partition $P=\left\{X_{1}, \ldots, X_{m}\right\}$ of V is called ϵ-balanced if there exists a subset $I \subset\{1, \ldots, m\}$ which verifies

- for all $i, j \in I$, we have $\left|X_{i}\right|=\left|X_{j}\right|$, and
- $\left|\bigcup_{i \notin I} X_{i}\right| \leq \epsilon|V|$.

7. Prove that any partition P of V contains a refinement Q such that Q is ϵ-balanced and $|Q| \leq\left(1+\epsilon^{-1}\right)|P|$.

8. (Szemerédi regularity lemma) Show that a finite number of iterations of 6 . and 7 . proves the following result: For any $\epsilon>0$, there exists N_{ϵ} such that for any finite set V and any Boolean function f on $S=V \times V$, there exists an ϵ-balanced ϵ-regular partition P of V of size at most N_{ϵ}.

Let $P=\left\{X_{1}, \ldots, X_{m}\right\}$ be an ϵ-regular ϵ-balanced partition of V for $f: S \rightarrow\{0,1\}$, with $m \leq N_{\epsilon}$ (whose existence is a consequence of question 8.), and let $k \leq m$ with $\left|X_{1}\right|=\cdots=\left|X_{k}\right|$, and $\left|X_{k+1} \cup \cdots \cup X_{m}\right| \leq \epsilon|V|$. Let R be the union of all $X_{i} \times X_{j}$ over the indices $1 \leq i, j \leq k$ with $\left(X_{i}, X_{j}\right) \epsilon$-regular and $\mu_{X_{i}, X_{j}} \geq 2 \epsilon$.

Consider the decomposition of f as the sum of Boolean functions f_{b} and f_{s}, where $f_{\mathrm{b}}=\mathbf{1}_{R} \cdot f$ and $f_{s}=f-\mathbf{1}_{R} \cdot f$.
9. Show that f_{s} has a small norm (as a function of ϵ).
10. Prove the following property for f_{b}. Let n be an integer. An n-cycle \mathbf{x} for f_{b} is an n-tuple $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $f_{\mathrm{b}}\left(x_{1}, x_{2}\right)=f_{\mathrm{b}}\left(x_{2}, x_{3}\right)=\cdots=f_{\mathrm{b}}\left(x_{n}, x_{1}\right)=1$. Show that either f_{b} does not have any n-cycle or it has at least $\left(2^{n}-n\right)\left(\frac{\epsilon(1-\epsilon)}{m}\right)^{n}|V|^{n}$ n-cycles.
Hint: Observe that the number of such n-cycles \mathbf{x} with $\mathbf{x} \in X_{i_{1}} \times \cdots \times X_{i_{n}}$ is given by $\sum_{\mathbf{x} \in X_{i_{1}} \times \cdots \times X_{i_{n}}} f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) \ldots f\left(x_{n}, x_{1}\right)$. Write $f_{\mid X_{i} \times X_{j}}=g_{i, j}+\mu_{X_{i}, X_{j}}$ as in 4., and apply 4.
11. What is the extension of 10 . to other patterns?

